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In this paper the approximation properties of the space of functions with
values in a Banach space which are summable in the sense of Bochner [1]
are studied. We obtain some theorems on the characterization and unicity
of best approximations related to those given by Cheney and Wulbert [5],
Kripke and Rivlin [10], Ptdk [11], and Singer [12] for real-valued summable
functions. In Section 4 we apply our results to an approximation problem
similar to that investigated by Carroll and McLaughlin [4].

1. DEFINITIONS

Let I be the interval [0, 1], 1 the Lebesgue measure on 7, and X a real
Banach space with the norm | - |. The class of all summable functions x(7)
on [ into X (for the definition of measurability and summability see [1])
provided with the norm

] = jlxx(m dt

is a Banach space and will be denoted by L(X). Following Bochner and
Taylor [3] we denote further by V=(X) the class of all functions x(¢) on 7
into X such that x(0) = 0 and such that there is a constant 4 > 0 with the
property | x(¢z -+ h) — x(¢)] < A | h|, whenever ¢ and ¢ -+ h belong to L
Denoting by N(x) the least such constant and defining the norm on V>(X)
by || x| = N(x), V=(X) is a Banach space. The space of all continuous func-
tions x(z) on I into X provided with the norm | x|| = sup, | x(¢)| will be
denoted by C(X). Let X* be the conjugate space of X. For x e L(X) and
u € V*(X*) let the integral

f du(t) x(t)
I
be defined in the same way as in [3].
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APPROXIMATION OF SUMMABLE FUNCTIONS 39

The following theorem gives the general form of linear bounded functionals
on L{X).

TaeoreM 1.1 (Bochner and Taylor [3]). For every fe L¥(X) there is
aue Vo(X*) such that || ull = || f| and

Fx) = j du(1) x(1) (1.1

for every x € L(X). Conversely, for every uec Ve(X*}, (1.1) defines a linear
bounded functional f on L(X) with || f]| = | ui].

Let X be a normed linear space, E a subspace of X. For x € X we denote
by Pg(x) the set of all best approximations of x in E, i.e., Pe(x) = {¢; € E;
Il x — eyl ==inf,eg | x — e|l}. Fissaid to be a U-space if for every x € X the
set Pp(x) contains at most one element of E. We further denote E® = {x € X;
0 e Pe(x)} and for a function x on [ to X, R(x) = {f; x(¢) % 0} and
Z(x) = {£; x(t) = 0}. R and N will denote the set of all real numbers and
the set of all positive integers, respectively.

2. MAXIMAL FUNCTIONALS ON L{X}

In the main theorem of this section we give characterizations in terms of
“differentiability” of those functionals # on L{X) which are maximal, i.e.,
for which there is a x € L(X) with ux = ||« - || x|l. In the particular case
that every function u on I to X which has bounded variation possesses the
strong derivative a.e. in I, this theorem is a consequence of Theorem 2.2 [31.
There are, however, as shown in [2], a Banach space X and a function
u € V*(X) such that u is not differentiable at any point in L

We denote

» e u(t By — ()
u'(t) x(t) = lkl_r_}g — x(1)
for ue Vo(X*), x € L(X), and every ¢ I for which the limit exists.

Lemma 2.1. Let QC T be a closed set, X a Banach space, x: Q — X a
continuous function, u € Vo(X*), |lu] = 1. Let

f du(t) x(t) = f | x(0)] dt. 2.1
0 Q
Then we have

() x(t) = | x()] a.e. in Q.
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Proof. Since || u|| = 1, (2.1) implies

L du(t) x(t) = L | x(t)| dt 2.2)

for every measurable subset 4 of Q. The map x being continuous and bounded
by a constant M 2> 1, it may be extended to a continuous map on the whole
interval I bounded by the same constant M ([6, Theorem IX, 6.1]). This
extension will be denoted by x again. For tQ, h %0, z: 0 — X let us
denote

D(t, h, z) = ((u(t + h) — u(®))/h) (7).

The function lim inf,_, D(z, &, x) is measurable (this fact may be proved in
a way similar to that used to prove the measurability of the lower derivative
of a real function). Since || # | == 1, we have for every 1 € Q

1{1%up D(t, h, x) < | x(t).
We denote
G=1{teQ; lirﬁlﬁionf D(t, h, x) < | x(®)]},

G, ={teQ; lirgll%ionfD(t, h, x) << | x(£)] — 1/n}, neN.

Obviously G = {J_, G, and the proof of the lemma will be completed by
showing that for every neN, u(G,) = 0. Assume the converse. Then
there is a 1y € N such that for G, = G, we have u(Go) = a > 0.

Let € be an arbitrary real number, 0 < € << ¢/2. Then there exist an open
set H, G, C H, a closed set F, F C G, and a continuous real function f: I — I
with f(t) = 1 for every ¢ € F, f(¢) = 0 for every ¢ € I\H such that

W(H\Gy) < €/dM,  w(Go\F) < ¢/4M, 2.3)
| [RECE RO at| <, 24

and
| fGo au(®) x(t) — [ dut) 0| <e @.5)

where y = f - x. Since y is a continuous function, there is a 6 > 0 such that
for an arbitrary partition P: t,,..., ¢, of I and arbitrary points =, € [t,_;, %],
i=1,.,n|P|=max;|t;, —t;_, | < 6 implies

j fI du(t) y(t) — S(P) | < e, (2.6)
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where S(P) — TLy (u(t) — u(t ) y(ry) and
| [130d— ¥ 15w (6~ 1| <« )

Since FC Gy, there exists for every teF a sequence {h,(¢)}ny with the
properties

0 < | h{t)) <39 for every k € N and every € F,
}Ci_x)rclé h(t) =0 for every ¢t € F,
and
D(t, (1), y) < [ ¥(0)| — 1/n, (2.8

for every teF and keN. The class of all intervals [z, ¢ 4 #,()] (or
it + k), 11 if hy(t) < 0), t €F, covers the set F in the sense of Vitali [7].
Hence it has a finite disjoint subclass I{¢;), i = 1,..., m, such that

9 (F\U I(tz-)) < ¢2M. (2.9)
=1 )

Let P, be a partition of I consisting of all boundary points ¢;, #; + /; of
the intervals I{t,), i = 1,...,m. Let P, :5;,..., 5, be a refinement of P, such
that none of the points s;, j = 0,..., p, is contained in any open interval
IntI(z), i = 1,..., m.

For every index j = 1,..., p exactly one of the following conditions can be
satisfied:

@) [s5-1, 8] = I(t) for some i = 1,..., m. Inthis case we put ; = ¢, .
i) {54,510 (\H) # @ and (i) does not hold. In this case we
choose an arbitrary 7; € [s;_1 , 5;] N ({(\H).
(i) [s5-4, 81N (\H) = g and (i) does not hold. In this case we
choose an arbitrary +; € [s;_4, 5;1.

Denoting by B the set of all indices j which satisfy condition (iii), we have
by (2.3) and (2.8)

p(U tsia50) < w (810 100)

jeB 2=1

< uH )+ p(FlO 162) < .

{=1



42 JAROSLAV MACH

Hence, we have by (2.4-(2.9)

[ dut)x0) < [ dute) 30+ € < ¥ (uls) — sy ) ¥ + 2

m

<Y D@y, by y) T h b+ (ulsy) — uls;_y) y(75) + 2¢

i=1 jeB

< S0 — Ung) | ) + M+ p (U [55o1 s,-l) 2

=1 JjEB

3

<) [yl | I—Z(I/no)lh | + 3¢

i=1 i=1

i Ms

) (= 50— 3 () [y + 3

Since by (2.3) and (2.9), Yp. | 7 | = w(Ur, 1(t;)) > a/2, we have by (2.4)
and (2.7) for every ¢, 0 < e << g/2,

[ due)x() < f | x(®)| df — a/2n, + Se.
Gy Gy
This, however, for ¢ << a/l10n, , contradicts (2.2).
LemMmA 2.2. For uc Vo(X*), x € L(X), let u'(t) x(t) exist a.e. in 1. Then
f w'(t) x(t) dt = f du(t) x(1). (2.10)
I I
Proof. Since
L' () x(D)] = lim 1/ A | Wt + h) — u(®)) x(1)|

< | ull| x(®)| ae. in I, 2.11)

u'(¢) x(t) is summable. Let € > 0 be given. Then there is a § > 0 such that
for every measurable set G C I, u(G) < 6 implies

fG | x(0)| dt < efllull. 2.12)
By Lusin’s theorem there is a y € C(X) such that u(R(x — y)) << 8/3 and

jj | x(@) — y@l dt < ef|l ul, (2.13)
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and a v € C(R) such that w(R(v — u'x)) < 8/3 and
[ 1w @ x) — o) dr < e (2.14)

We have o(t) = u'(¢) x(¢) for every te N = (I\(R(x — y) U R(v — t/x)))\ M,
(M) = 0. We choose an 7, 0 < 5 < 8, such that for every partition P,
I P| < % implies

'S(P) _ fI du(r) y(t)l <e (2.15)

and | f; — ¢, | < n implies
I U(tl) - U(tg)[ < €. (2.16)

For every f € N there exists a sequence £,(t) — 0 such that for every ne N,
0 < h,(r) < v and

| D(t, hy(2), x) — ' ({t) x(1)| < e. 2.17

Since the class of all intervals [7, # + £,(f)], 1€ N, neN, covers the set ¥
in the sense of Vitali, there is a k€N and a disjoint subclass {¢;, #; + 4],
j = 1,..,, k, such that we have

k

p (N\U [, , 1, - h,-]) < 8/3. (2.18)

j=1

let P:sq,..., 5, be a refinement of the partition Py: 4, ,..., £, + A, such that
| P| < 7, there is no index i = 0,..., n such that s, elIntls;, #, + &;] for
some j = 1,..., k and

Q) Y~ ¥ (i) — s )| < & 219)

i¢A

L\Ulg-:l{tj,tj+hj]
where A is the set of all indices 7 such that thereisaj = 1,..., k with s, = ¢; .
Let us put

ey = 3 i) TS o,

r Sip1 — ¢

where y is the characteristic function. By (2.15), we have

l L w(t) dt — L du(t) y(z)] <e
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Further, by (2.11)~2.14), (2.16), (2.17), (2.19), we have

U[w(t)dt~ Lv(t)dti

< i D(ty' > hi ’ X) - U(t)! di

Gms1 [tj',ti-)-hj}

{
+)
7

<y | DGy, by s %) — () (e de

o R LN PR 5Y)

f (w y(sg) — v(l‘)) Xlss65220F) ' dt

Sgpr = 5

=0 -
i¢A

&

+ X [ ) x) — o) de

=1 ‘Lt t5th;

o w{Ssq) — u(sy)
= 87) Xs,, 5.0 dt! ’
- J;zgo i1 — 5 y( z) XI z:sz+1]( ) + fu?=0,i¢‘4[si,5’.+1] ?)(f) dt
i¢A

< 2e + + 2¢ < Te.

S (Wlsern) — uls) (62
=)

Further, by (2.13), we have
| [y =(0) — [ auyy) | < e
Hence
| [ dutty=te) — [ wioy xceyde|
<| f @ut) =)~ [ dut )|
+ | [ dut ) — [ wir)de {v+ | [wydr — [ ety
s j f; o(f) dt — fi o (£) x(£) dt! < 10e.
THEOREM 2.3. Let x& L(X), ue Veo(X®), lull = 1. Then we have

fI du(t) x(t) = f, | x(0)] dt (2.20)
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if and only if
uw'() x(¢) = | x(0)] a.e. in L. 2.2

Proof. 1If (2.21) holds, then we have (2.20) by Lemma 2.2,

Conversely, let (2.20) be satisfied. Then by Lusin’s theorem, for every
n €N there is an open set R, such that u(R,) << 1/n and such that x is con-
tinuous on I\R,, . Since for every n e N, (2.20) implies

[ > =[xl
I\R, I\R,

we have (2.21) by Lemma 2.1.

Remark 2.4. Let ue Vo(X*), xeL(X), y{) = ot) - x(t) a.e. in I,
where « is a real function on I Let u'(z) x(¢) exist ae. in I Then we
obviously have u/'(¢) y(t) = oft) - v'(£) x(1) a.e. in L

3. BEST APPROXIMATION IN L({X)

The following theorem characterizes elements of best approximation’in
L(X). The equivalence (i) - (iii) is a generalization of a well-known theorem
for real-valued summable functions given by James [8] and Kripke and
Rivlin [10]. Our proof of the implication (iii) = (i) is a modification of
Singer’s proof [12].

TueoreM 3.1. Let E be a linear subspace of L(X), x € L{(X)\E, e, E.
Then the following conditions are equivalent:

) e € Pp(x)

(i) There exists a uc Vo(X*), | u|| = 1 such that we have
u (H)(x(t) — ey(1)) = | x(t) — e(t)] a.e inl (3.1)
and
f du(t) e(t) =0  for every e c E. 3.2
I

(iii) There exists a ue V(X*), || u|| = 1, such that we have (3.1) and

Js

Proof. (i) implies (ii): This is an immediate consequence of Singer’s
Theorem 1.1 [12], and Theorems 1.1 and 2.3 above.

du?) e(t) [ <| )

(z—eq) Z(z—eq

fe(Oidt  forallec E. (3.3
)
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(i) implies (iii): For every e € E we have by (3.2)

fm_eo) du(t) e(t) i ) f

(ii) implies (i): Let e € E. It follows from the Hahn-Banach theorem that
there exists a u; € Vo(X*), || uy || = 1, such that we have

du(t) e(t) ] < fz(m_%) | e(t)] dt.

Z(z—eq)

[ duo)es) — e0) = [ 1e(t) = ) .

Hence
f dul(e0~e):f ey — e dt.
JZ(z—ey) Z(x—ey)
Defining
2—e d - .
us(t) = — [2a-c) diley — €) (1) if leg —e|dt #0,
.[Z(w~eo) | &g — e | dt Z(x—eq)
=0 if leg—e|dt =0,
Z(x—eg)
we obtain || uy || < I and
f dule, — e) -+ dus(ey — €) = 0.
Rlx—eg) Z(x—eq)
Hence
Ix—el =]  dux—e)=[  dux—e)t [ duler—o)
Riz—ey) (x—eq) Rlx—eg)
-} dus(e, — €) + f dus(x — eg)
Z(x—ep) Z(x—eq)
= du(x — e) + f dus(x — €)
Rlxz—ey) Z(z—eq)
< |x~—e]dt—[—f |x —eldt =|x—e]|
Riz—eq) Z(z—ey)

The next theorem gives equivalent conditions for a linear subspace E
of L{X)to be a U-space. Similar theorems for real-valued summable functions
have been proved by Cheney and Wulbert [5, Theorem 21} and Singer
[12, Theorem 3.4].
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LemMa 3.2. Let X be a strict convex Banach space and let x € L(X) have
two best approximations e, , e, € E, e, 5= e, . Then we have

Z(x — ey) C Z(ey — &), (3.4)

where e, = e,/2 -+ ey/2 and there exists a real nonnegative function o suck
that

x(t) — eft) = oft) - (x(t) — ey(t)) a.e. in R(x — ey). (3.5

Proof. Since e, ,e,, e, € Pg(x), we have
[Ux—el+ix—el—2/x—edt=0.
I

The integrand being nonnegative, we must have
| x(t) — ()] + [ x(1) — ex(1)] = 21 x(r) — e(?)]  ae. in

which implies (3.4) (this argument is due to Cheney and Wulbert [5]). Since
X is strict convex, there exists a real nonnegative function « such that (3.5)
holds.

THEOREM 3.3. Lef X be a strict convex Banach space, E a linear subspace
of I(X). Then the following conditions are equivalent:
(i) E is not a U-space.

(i1} There exist an x € E°, an ey € E\{0}, and a real function o, | o« | < 1,
such that

e(t) = aft) - x(t)  ae.inl (3.6)

(il There exist a ue Vo(X*), |ul = 1, and an ey, € E\{0} such that

f du(tye(t) =0  foreveryee E (3.7
7
and

L' (t) eg(t)] = | ()] ae. in L. (3.8)

Proof. (i) implies (ii): If E is not a U-space then there exist an x € E°
and an e, € E\{0} such that e;,, —e; € Pg(x) (see e.g., [I1, remark
following 1.3]). By Lemma 3.2 there exist real nonnegative functions oy
and «, such that we have

x(t) — ey(t) = ay(t) - x(t) a.e. in R(x},
x(2) + eo(t) = an(t) - x(¥) a.e. in R(x).

640/19[1-4
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Since oy and «, are nonnegative, we must have
Jaoft) — 1] << 1 a.e. in R(x).
On the other hand, we have by Lemma 3.2, Z(x) C Z(e,). Thus the function

alt) = a(t) — 1 for t € R(x)
=0 for teZ(x)

has the required properties.

(ii) implies (iii): If (i) is satisfied then by Theorem 3.1 there is a
ue Vo(X*®), [u|| = 1, such that we have (3.7) and such that u'(¢) x(¢) =
| x(t)| a.e. in I. Hence by Remark 2.4 we obtain

| (1) e®)] = [/ (EHedt) - X = | D)) - | x(O)] = | o))  ae.inlL
(iii) implies (i): Let us define
J(t) = 2e(t) - sign u'(¢) ey(1) for tel

Then, by Remark 2.4, we obviously have u'(¢) y() = | y(¢t)| a.e.in I and
W () (p(t) — ey(2)) = | ¥(¢) — ey(t)| a.e. in 1. Thus by Theorem 3.1, 0 and e,
are best approximations of y.

Remark 3.4. The condition “There exist an x<€ E° and an e e E\{0}
such that Z(e) O Z(x),” which in the case of real-valued functions is necessary
and sufficient for £ not to be a U-space [5], is not sufficient in the case of
vector-valued functions.

ExampLe. Let X = R? with the Euclidean norm | - |. Then every x € L(X)
has the form x = (y, z), where y,ze L,, L, the space of all Lebesgue-
summable real-valued functions. Let

E={e;e =(f0),feLy
Then we have for x € L(X), x = (y,z), and e E, e = (f, 0),

lx—el=[1x—eld=[(y—re+izppra.

Thus (y, 0) is the only best approximation of x in E and E is a U-space.
On the other hand, for every x = (0, z) € E°® there exists an e € E\{0}, namely
e = (z,0), such that Z(e) D Z(x).

Remark 3.5. If X is not a strict convex Banach space, condition (ii) of
Theorem 3.3 is not necessary for E not to be a U-space.
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Exampre. Let X = R2® with the norm | x | = |{x;, x0)| = Max(| x¢ |, | x5 |},
E the same subspace of L(X) as in Remark 3.4. Since for every x e L(X}
of the form x = (0, y)and e E, e = (f, 0},

lx —el = | Max(lf1,; v dr.
I

every ¢ = (f,0) e E such that |f| < |y| is a best approximation of x.
On the other hand, if there existan x € E%, x = (y, z), an e E, ¢ = (£, 0},
and a real function o« such thate = « * x ae.in /, we must have | y | <C | z |
a.e. in 7 which implies that ¢ = 0 a.e. in Z(z) and « = 0 a.e. in R(z) Thus
e = Qis the only element of E with the propertye = « - x.

4. AN APPLICATION TO SIMULTANEOUS APPROXIMATION

let myneN, fi,..fmel;, and P, be the space of all polynomials of
degree less than or equal to #n. Carroll and McLaughlin {4} considered the
problem of finding a py € P, such that

S [ 1fi=poldt = mfZJ J—— (4.1)
i=1 "1

As remarked in [4], if m is even, the best approximation in this sense need
not be unique.

Let X = R™ with the norm | x| = |(X; ..., X))l = Spy | x; | and let E
be the space of all ¢ = (e, ,..., e,,) € L{X)) such that there exists a p € P, with
e; = p for every i = 1,..., m. Obviously, problem (4.1) is equivalent to the
problem of finding for x € L(X) a best approximation in £. We show that there
is a norm in X, namely every strict convex norm, such that the best approxi-
mation is always unique. We formuiate this more generally.

Let 4 be an arbitrary set of indices, X = R4 a strict convex Banach space,
0 a subspace of L, such that u(Z(g)) = 0 for every g€ Q\{0}. Foreveryge Q
let £{X) contain the element ¢ = {¢,}, e, = ¢, for every a € A. Let £ be the
subspace of all such elements. An element x = {x,} € (X)) will be said to
have the property (P) if there are indices a and b in A4 such that x, & x; ir
a set of positive measure.

TueorREM 4.1. For every x € L(X) with the property (P} the set Pg(x)
contains at most one element.

Proof. If thereis an x € L{X} such that e and —e € E\{0} are best approxi-
mations of x, then by the proof of Theorem 3.3 there is a real function «
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such that e = o - x a.e. in I. Since e(¢) = 0 a.e. in I, we have «(f) # 0 a.e.

in I. Thus x(¢) = 1/a(t) - e(t) a.e. in I, which implies that x cannot have the

property (P). :
The following corollaries are immediate consequences of Theorem 4.1.

COROLLARY 4.2. Let m be an integer, m = 2. Then for every
X = (Xy 3oy Xm), Xs€ Ly, = 1,..,m, satisfying the condition (P) there
is at most one ¢, € Q such that

f (Z [ xi(t) — qo(t)lz) dt = mff (Z | xit) — q(t)[z) dt.

i=1

COROLLARY 4.3. For every x = {x;};11, x;€L,, i€N, satisfving the
condition (P) and such that sup [1| x:(8)| dt < + oo there exists at most
one q, € Q such that

JE 2000 o o= [ (51— o) e

aeQ
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