Best Approximation of Lebesgue–Bochner Summable Functions

JAROSLAV MACH

Institut für Angewandte Mathematik und Informatik der Universität Bonn, 5300 Bonn, Wegelerstrasse 6, Federal Republic of Germany

> Communicated by E. W. Cheney Received August 15, 1975

In this paper the approximation properties of the space of functions with values in a Banach space which are summable in the sense of Bochner [1] are studied. We obtain some theorems on the characterization and unicity of best approximations related to those given by Cheney and Wulbert [5], Kripke and Rivlin [10], Pták [11], and Singer [12] for real-valued summable functions. In Section 4 we apply our results to an approximation problem similar to that investigated by Carroll and McLaughlin [4].

1. DEFINITIONS

Let I be the interval [0, 1], μ the Lebesgue measure on I, and X a real Banach space with the norm $|\cdot|$. The class of all summable functions x(t) on I into X (for the definition of measurability and summability see [1]) provided with the norm

$$||x|| = \int_{I} |x(t)| dt$$

is a Banach space and will be denoted by L(X). Following Bochner and Taylor [3] we denote further by $V^{\infty}(X)$ the class of all functions x(t) on Iinto X such that x(0) = 0 and such that there is a constant $A \ge 0$ with the property $|x(t+h) - x(t)| \le A |h|$, whenever t and t+h belong to I. Denoting by N(x) the least such constant and defining the norm on $V^{\infty}(X)$ by ||x|| = N(x), $V^{\infty}(X)$ is a Banach space. The space of all continuous functions x(t) on I into X provided with the norm $||x|| = \sup_{I} |x(t)|$ will be denoted by C(X). Let X^* be the conjugate space of X. For $x \in L(X)$ and $u \in V^{\infty}(X^*)$ let the integral

$$\int_{I} du(t) x(t)$$

be defined in the same way as in [3].

The following theorem gives the general form of linear bounded functionals on L(X).

THEOREM 1.1 (Bochner and Taylor [3]). For every $f \in L^*(X)$ there is a $u \in V^{\infty}(X^*)$ such that ||u|| = ||f|| and

$$f(x) = \int_{I} du(t) x(t) \tag{1.1}$$

for every $x \in L(X)$. Conversely, for every $u \in V^{\infty}(X^*)$, (1.1) defines a linear bounded functional f on L(X) with ||f|| = ||u||.

Let X be a normed linear space, E a subspace of X. For $x \in X$ we denote by $P_E(x)$ the set of all best approximations of x in E, i.e., $P_E(x) = \{e_0 \in E; \|x - e_0\| = \inf_{e \in E} \|x - e\|\}$. E is said to be a U-space if for every $x \in X$ the set $P_E(x)$ contains at most one element of E. We further denote $E^0 = \{x \in X; 0 \in P_E(x)\}$ and for a function x on I to X, $R(x) = \{t; x(t) \neq 0\}$ and $Z(x) = \{t; x(t) = 0\}$. R and N will denote the set of all real numbers and the set of all positive integers, respectively.

2. MAXIMAL FUNCTIONALS ON L(X)

In the main theorem of this section we give characterizations in terms of "differentiability" of those functionals u on L(X) which are maximal, i.e., for which there is a $x \in L(X)$ with $ux = ||u|| \cdot ||x||$. In the particular case that every function u on I to X which has bounded variation possesses the strong derivative a.e. in I, this theorem is a consequence of Theorem 2.2 [3]. There are, however, as shown in [2], a Banach space X and a function $u \in V^{\infty}(X)$ such that u is not differentiable at any point in I.

We denote

$$u'(t) x(t) = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h} x(t)$$

for $u \in V^{\infty}(X^*)$, $x \in L(X)$, and every $t \in I$ for which the limit exists.

LEMMA 2.1. Let $Q \subseteq I$ be a closed set, X a Banach space, $x: Q \to X$ a continuous function, $u \in V^{\infty}(X^*)$, ||u|| = 1. Let

$$\int_{Q} du(t) x(t) = \int_{Q} |x(t)| dt.$$
 (2.1)

Then we have

$$u'(t) x(t) = |x(t)|$$
 a.e. in Q.

Proof. Since ||u|| = 1, (2.1) implies

$$\int_{A} du(t) x(t) = \int_{A} |x(t)| dt$$
 (2.2)

for every measurable subset A of Q. The map x being continuous and bounded by a constant $M \ge 1$, it may be extended to a continuous map on the whole interval I bounded by the same constant M ([6, Theorem IX, 6.1]). This extension will be denoted by x again. For $t \in Q$, $h \ne 0$, $z: Q \rightarrow X$ let us denote

$$D(t, h, z) = ((u(t+h) - u(t))/h) z(t).$$

The function $\liminf_{h\to 0} D(t, h, x)$ is measurable (this fact may be proved in a way similar to that used to prove the measurability of the lower derivative of a real function). Since ||u|| = 1, we have for every $t \in Q$

$$\limsup_{h\to 0} D(t, h, x) \leqslant |x(t)|.$$

We denote

$$G = \{t \in Q; \liminf_{h \to 0} D(t, h, x) < |x(t)|\},\$$

$$G_n = \{t \in Q; \liminf_{h \to 0} D(t, h, x) < |x(t)| - 1/n\}, \quad n \in \mathbb{N}.$$

Obviously $G = \bigcup_{n=1}^{\infty} G_n$ and the proof of the lemma will be completed by showing that for every $n \in \mathbb{N}$, $\mu(G_n) = 0$. Assume the converse. Then there is a $n_0 \in \mathbb{N}$ such that for $G_0 = G_{n_0}$ we have $\mu(G_0) = a > 0$.

Let ϵ be an arbitrary real number, $0 < \epsilon < a/2$. Then there exist an open set $H, G_0 \subset H$, a closed set $F, F \subset G_0$ and a continuous real function $f: I \to I$ with f(t) = 1 for every $t \in F$, f(t) = 0 for every $t \in I \setminus H$ such that

$$\mu(H \setminus G_0) < \epsilon/4M, \qquad \mu(G_0 \setminus F) < \epsilon/4M,$$
(2.3)

$$\left|\int_{G_0} |x(t)| \, dt - \int_I |y(t)| \, dt \right| < \epsilon, \tag{2.4}$$

and

$$\left|\int_{G_0} du(t) x(t) - \int_I du(t) y(t)\right| < \epsilon, \qquad (2.5)$$

where $y = f \cdot x$. Since y is a continuous function, there is a $\delta > 0$ such that for an arbitrary partition P: $t_0, ..., t_n$ of I and arbitrary points $\tau_i \in [t_{i-1}, t_i]$, $i = 1, ..., n, |P| = \max_i |t_i - t_{i-1}| < \delta$ implies

$$\left|\int_{I} du(t) y(t) - S(P)\right| < \epsilon, \qquad (2.6)$$

40

where $S(P) = \sum_{j=1}^{n} (u(t_j) - u(t_{j-1})) y(\tau_j)$ and

$$\left|\int_{I} |y(t)| dt - \sum_{j=1}^{n} |y(\tau_{j})| (t_{j} - t_{j-1})\right| < \epsilon.$$
(2.7)

Since $F \subseteq G_0$, there exists for every $t \in F$ a sequence $\{h_k(t)\}_{k \in \mathbb{N}}$ with the properties

$$0 < |h_k(t)| < \delta$$
 for every $k \in \mathbb{N}$ and every $t \in F$,
 $\lim_{k \to \infty} h_k(t) = 0$ for every $t \in F$,

and

$$D(t, h_k(t), y) < |y(t)| - 1/n_0$$
(2.8)

for every $t \in F$ and $k \in \mathbb{N}$. The class of all intervals $[t, t + h_k(t)]$ (or $[t + h_k(t), t]$ if $h_k(t) < 0$), $t \in F$, covers the set F in the sense of Vitali [7]. Hence it has a finite disjoint subclass $I(t_i)$, i = 1, ..., m, such that

$$\mu\left(F \setminus \bigcup_{i=1}^{m} I(t_i)\right) < \epsilon/2M.$$
(2.9)

Let P_0 be a partition of *I* consisting of all boundary points t_i , $t_i + h_i$ of the intervals $I(t_i)$, i = 1,...,m. Let $P_1 : s_0,...,s_p$ be a refinement of P_0 such that none of the points s_j , j = 0,...,p, is contained in any open interval Int $I(t_i)$, i = 1,...,m.

For every index j = 1,..., p exactly one of the following conditions can be satisfied:

(i) $[s_{j-1}, s_j] = I(t_i)$ for some i = 1, ..., m. In this case we put $\tau_j = t_i$.

(ii) $[s_{j-1}, s_j] \cap (I \setminus H) \neq \emptyset$ and (i) does not hold. In this case we choose an arbitrary $\tau_j \in [s_{j-1}, s_j] \cap (I \setminus H)$.

(iii) $[s_{j-1}, s_j] \cap (I \setminus H) = \emptyset$ and (i) does not hold. In this case we choose an arbitrary $\tau_j \in [s_{j-1}, s_j]$.

Denoting by B the set of all indices j which satisfy condition (iii), we have by (2.3) and (2.8)

$$egin{aligned} &\mu\left(igcup_{j\in B}\left[s_{j-1}\,,\,s_{j}
ight]
ight)\leqslant\mu\left(Higcap_{i=1}^{m}I(t_{i})
ight)\ &\leqslant\mu(Hackslash F)+\mu\left(Figcap_{i=1}^{m}I(t_{i})
ight)<\epsilon/M. \end{aligned}$$

Hence, we have by (2.4)–(2.9)

$$\begin{split} \int_{G_0} du(t) \, x(t) &\leq \int_I du(t) \, y(t) + \epsilon < \sum_{j=1}^p \left(u(s_j) - u(s_{j-1}) \right) \, y(\tau_j) + 2\epsilon \\ &\leq \sum_{i=1}^m D(t_i \, , \, h_i \, , \, y) \mid h_i \mid + \sum_{j \in B} \left(u(s_j) - u(s_{j-1}) \right) \, y(\tau_j) + 2\epsilon \\ &\leq \sum_{i=1}^m \left(\mid y(t_i) \mid - 1/n_0 \right) \mid h_i \mid + M \cdot \mu \left(\bigcup_{j \in B} \left[s_{j-1} \, , \, s_j \right] \right) + 2\epsilon \\ &\leq \sum_{i=1}^m \mid y(t_i) \mid \mid h_i \mid - \sum_{i=1}^m \left(1/n_0 \right) \mid h_i \mid + 3\epsilon \\ &\leq \sum_{j=1}^p \mid y(\tau_j) \mid \left(s_j - s_{j-1} \right) - \sum_{i=1}^m \left(1/n_0 \right) \mid h_i \mid + 3\epsilon. \end{split}$$

Since by (2.3) and (2.9), $\sum_{i=1}^{m} |h_i| = \mu(\bigcup_{i=1}^{m} I(t_i)) > a/2$, we have by (2.4) and (2.7) for every ϵ , $0 < \epsilon < a/2$,

$$\int_{G_0} du(t) \, x(t) < \int_{G_0} |x(t)| \, dt - a/2n_0 + 5\epsilon.$$

This, however, for $\epsilon < a/10n_0$, contradicts (2.2).

LEMMA 2.2. For $u \in V^{\infty}(X^*)$, $x \in L(X)$, let u'(t) x(t) exist a.e. in I. Then

$$\int_{I} u'(t) x(t) dt = \int_{I} du(t) x(t).$$
(2.10)

Proof. Since

$$|u'(t) x(t)| = \lim_{h \to 0} 1/|h| |(u(t+h) - u(t)) x(t)|$$

$$\leq ||u|| |x(t)| \text{ a.e. in } I, \qquad (2.11)$$

u'(t) x(t) is summable. Let $\epsilon > 0$ be given. Then there is a $\delta > 0$ such that for every measurable set $G \subset I, \mu(G) < \delta$ implies

$$\int_{G} |x(t)| dt < \epsilon/||u||.$$
(2.12)

By Lusin's theorem there is a $y \in C(X)$ such that $\mu(R(x - y)) < \delta/3$ and

$$\int_{I} |x(t) - y(t)| \, dt < \epsilon / || \, u \, ||, \qquad (2.13)$$

and a $v \in C(\mathbb{R})$ such that $\mu(R(v - u'x)) < \delta/3$ and

$$\int_{I} |u'(t) x(t) - v(t)| dt < \epsilon.$$
(2.14)

We have v(t) = u'(t) x(t) for every $t \in N = (I \setminus (R(x - y) \cup R(v - u'x))) \setminus M$, $\mu(M) = 0$. We choose an η , $0 < \eta < \delta$, such that for every partition P, $|P| < \eta$ implies

$$\left|S(P) - \int_{I} du(t) y(t)\right| < \epsilon$$
(2.15)

and $|t_1 - t_2| < \eta$ implies

$$|v(t_1) - v(t_2)| < \epsilon. \tag{2.16}$$

For every $t \in N$ there exists a sequence $h_n(t) \to 0$ such that for every $n \in \mathbb{N}$, $0 < h_n(t) < \eta$ and

$$|D(t, h_n(t), x) - u'(t) x(t)| < \epsilon.$$
(2.17)

Since the class of all intervals $[t, t + h_n(t)]$, $t \in N$, $n \in \mathbb{N}$, covers the set N in the sense of Vitali, there is a $k \in \mathbb{N}$ and a disjoint subclass $[t_j, t_j + h_j]$, j = 1, ..., k, such that we have

$$\mu\left(N\Big\backslash\bigcup_{j=1}^{k}\left[t_{j},t_{j}+h_{j}\right]\right)<\delta/3.$$
(2.18)

Let $P: s_0, ..., s_n$ be a refinement of the partition $P_1: t_1, ..., t_n + h_n$ such that $|P| < \eta$, there is no index i = 0, ..., n such that $s_i \in \text{Int}[t_i, t_j + h_j]$ for some j = 1, ..., k and

$$\left|\int_{I\setminus \bigcup_{j=1}^{k}[t_{j},t_{j}+h_{j}]} du(t) y(t) - \sum_{\substack{i=0\\i\notin A}}^{n} (u(s_{i+1}) - u(s_{i})) y(s_{i})\right| < \epsilon, \quad (2.19)$$

where A is the set of all indices i such that there is a j = 1,..., k with $s_i = t_j$. Let us put

$$w(t) = \sum_{i=0}^{n} \frac{u(s_{i+1}) - u(s_i)}{s_{i+1} - s_i} y(s_i) \chi_{[s_i, s_{i+1}]}(t),$$

where χ is the characteristic function. By (2.15), we have

$$\left|\int_{I}w(t)\,dt-\int_{I}du(t)\,y(t)\right|<\epsilon.$$

Further, by (2.11)-(2.14), (2.16), (2.17), (2.19), we have

$$\begin{split} \left| \int_{I} w(t) \, dt - \int_{I} v(t) \, dt \right| \\ &\leqslant \sum_{j=1}^{k} \int_{[t_{j}, t_{j} + h_{j}]} |D(t_{j}, h_{j}, x) - v(t)| \, dt \\ &+ \int_{I} \left| \sum_{\substack{i=0 \\ i \notin A}}^{n} \left(\frac{u(s_{i+1}) - u(s_{i})}{s_{i+1} - s_{i}} y(s_{i}) - v(t) \right) \chi_{[s_{i}, s_{i+1}]}(t) \right| \, dt \\ &\leqslant \sum_{j=1}^{k} \int_{[t_{j}, t_{j} + h_{j}]} |D(t_{j}, h_{j}, x) - u'(t_{j}) x(t_{j})| \, dt \\ &+ \sum_{j=1}^{k} \int_{[t_{j}, t_{j} + h_{j}]} |u'(t_{j}) x(t_{j}) - v(t)| \, dt \\ &+ \left| \int_{I} \sum_{\substack{i=0 \\ i \notin A}}^{n} \frac{u(s_{i+1}) - u(s_{i})}{s_{i+1} - s_{i}} y(s_{i}) \chi_{[s_{i}, s_{i+1}]}(t) \, dt \right| + \left| \int_{\bigcup_{i=0, i \notin A}}^{n} [s_{i}, s_{i+1}] v(t) \, dt \right| \\ &< 2\epsilon + \left| \sum_{\substack{i=0 \\ i \notin A}}^{n} (u(s_{i+1}) - u(s_{i})) y(s_{i}) \right| + 2\epsilon < 7\epsilon. \end{split}$$

Further, by (2.13), we have

$$\left|\int_{I} du(t) x(t) - \int_{I} du(t) y(t)\right| < \epsilon.$$

Hence

$$\begin{aligned} \left| \int_{I} du(t) x(t) - \int_{I} u'(t) x(t) dt \right| \\ &\leq \left| \int_{I} du(t) x(t) - \int_{I} du(t) y(t) \right| \\ &+ \left| \int_{I} du(t) y(t) - \int_{I} w(t) dt \right| + \left| \int_{I} w(t) dt - \int_{I} v(t) dt \right| \\ &+ \left| \int_{I} v(t) dt - \int_{I} u'(t) x(t) dt \right| < 10\epsilon. \end{aligned}$$

THEOREM 2.3. Let $x \in L(X)$, $u \in V^{\infty}(X^*)$, ||u|| = 1. Then we have

$$\int_{I} du(t) x(t) = \int_{I} |x(t)| dt$$
 (2.20)

if and only if

$$u'(t) x(t) = |x(t)|$$
 a.e. in I. (2.21)

Proof. If (2.21) holds, then we have (2.20) by Lemma 2.2.

Conversely, let (2.20) be satisfied. Then by Lusin's theorem, for every $n \in \mathbb{N}$ there is an open set R_n such that $\mu(R_n) < 1/n$ and such that x is continuous on $I \setminus R_n$. Since for every $n \in \mathbb{N}$, (2.20) implies

$$\int_{I\setminus R_n} du(t) x(t) = \int_{I\setminus R_n} |x(t)| dt,$$

we have (2.21) by Lemma 2.1.

Remark 2.4. Let $u \in V^{\infty}(X^*)$, $x \in L(X)$, $y(t) = \alpha(t) \cdot x(t)$ a.e. in *I*, where α is a real function on *I*. Let u'(t)x(t) exist a.e. in *I*. Then we obviously have $u'(t)y(t) = \alpha(t) \cdot u'(t)x(t)$ a.e. in *I*.

3. Best Approximation in L(X)

The following theorem characterizes elements of best approximation in L(X). The equivalence (i) \Leftrightarrow (iii) is a generalization of a well-known theorem for real-valued summable functions given by James [8] and Kripke and Rivlin [10]. Our proof of the implication (iii) \Rightarrow (i) is a modification of Singer's proof [12].

THEOREM 3.1. Let E be a linear subspace of L(X), $x \in L(X) \setminus \overline{E}$, $e_0 \in E$. Then the following conditions are equivalent:

- (i) $e_0 \in P_E(x)$
- (ii) There exists a $u \in V^{\infty}(X^*)$, ||u|| = 1 such that we have

$$u'(t)(x(t) - e_0(t)) = |x(t) - e_0(t)| \quad a.e. \text{ in } I$$
(3.1)

and

$$\int_{I} du(t) e(t) = 0 \quad \text{for every } e \in E.$$
(3.2)

(iii) There exists a $u \in V^{\infty}(X^*)$, ||u|| = 1, such that we have (3.1) and

$$\left|\int_{R(x-e_0)} du(t) e(t)\right| \leqslant \int_{Z(x-e_0)} |e(t)| dt \quad \text{for all } e \in E.$$
(3.3)

Proof. (i) implies (ii): This is an immediate consequence of Singer's Theorem 1.1 [12], and Theorems 1.1 and 2.3 above.

JAROSLAV MACH

(ii) implies (iii): For every $e \in E$ we have by (3.2)

$$\left|\int_{R(x-e_0)} du(t) e(t)\right| \leqslant \left|\int_{Z(x-e_0)} du(t) e(t)\right| \leqslant \int_{Z(x-e_0)} |e(t)| dt.$$

(iii) implies (i): Let $e \in E$. It follows from the Hahn-Banach theorem that there exists a $u_1 \in V^{\infty}(X^*)$, $||u_1|| = 1$, such that we have

$$\int_{I} du_{1}(t)(e_{0}(t) - e(t)) = \int_{I} |e_{0}(t) - e(t)| dt$$

Hence

$$\int_{Z(x-e_0)} du_1(e_0-e) = \int_{Z(x-e_0)} |e_0-e| dt.$$

Defining

we obtain $||u_2|| \leq 1$ and

$$\int_{R(x-e_0)} du(e_0-e) + \int_{Z(x-e_0)} du_2(e_0-e) = 0.$$

Hence

$$\|x - e_0\| = \int_{R(x-e_0)} du(x - e_0) = \int_{R(x-e_0)} du(x - e_0) + \int_{R(x-e_0)} du(e_0 - e) + \int_{Z(x-e_0)} du_2(e_0 - e) + \int_{Z(x-e_0)} du_2(x - e_0) = \int_{R(x-e_0)} du(x - e) + \int_{Z(x-e_0)} du_2(x - e) \\ \leqslant \int_{R(x-e_0)} |x - e| dt + \int_{Z(x-e_0)} |x - e| dt = ||x - e||.$$

The next theorem gives equivalent conditions for a linear subspace E of L(X) to be a U-space. Similar theorems for real-valued summable functions have been proved by Cheney and Wulbert [5, Theorem 21] and Singer [12, Theorem 3.4].

46

LEMMA 3.2. Let X be a strict convex Banach space and let $x \in L(X)$ have two best approximations $e_1, e_2 \in E, e_1 \neq e_2$. Then we have

$$Z(x - e_0) \subseteq Z(e_1 - e_2), \tag{3.4}$$

where $e_0 = e_1/2 + e_2/2$ and there exists a real nonnegative function α such that

$$x(t) - e_1(t) = \alpha(t) \cdot (x(t) - e_2(t))$$
 a.e. in $R(x - e_2)$. (3.5)

Proof. Since e_1 , e_2 , $e_0 \in P_E(x)$, we have

$$\int_{I} (|x - e_1| + |x - e_2| - 2 |x - e_0|) dt = 0$$

The integrand being nonnegative, we must have

$$|x(t) - e_1(t)| + |x(t) - e_2(t)| = 2 |x(t) - e_0(t)|$$
 a.e. in *I*,

which implies (3.4) (this argument is due to Cheney and Wulbert [5]). Since X is strict convex, there exists a real nonnegative function α such that (3.5) holds.

THEOREM 3.3. Let X be a strict convex Banach space, E a linear subspace of L(X). Then the following conditions are equivalent:

(i) E is not a U-space.

(ii) There exist an $x \in E^0$, an $e_0 \in E \setminus \{0\}$, and a real function α , $|\alpha| \leq 1$, such that

$$e_0(t) = \alpha(t) \cdot x(t) \qquad a.e. \text{ in } I. \tag{3.6}$$

(iii) There exist a $u \in V^{\infty}(X^*)$, ||u|| = 1, and an $e_0 \in E \setminus \{0\}$ such that

$$\int_{I} du(t) e(t) = 0 \quad \text{for every } e \in E$$
(3.7)

and

$$|u'(t) e_0(t)| = |e_0(t)|$$
 a.e. in I. (3.8)

Proof. (i) implies (ii): If E is not a U-space then there exist an $x \in E^0$ and an $e_0 \in E \setminus \{0\}$ such that e_0 , $-e_0 \in P_E(x)$ (see e.g., [11, remark following 1.3]). By Lemma 3.2 there exist real nonnegative functions α_1 and α_2 such that we have

$$\begin{aligned} \mathbf{x}(t) - \mathbf{e}_0(t) &= \alpha_1(t) \cdot \mathbf{x}(t) & \text{a.e. in } R(\mathbf{x}), \\ \mathbf{x}(t) + \mathbf{e}_0(t) &= \alpha_2(t) \cdot \mathbf{x}(t) & \text{a.e. in } R(\mathbf{x}). \end{aligned}$$

Since α_1 and α_2 are nonnegative, we must have

$$|\alpha_2(t)-1| \leq 1$$
 a.e. in $R(x)$.

On the other hand, we have by Lemma 3.2, $Z(x) \subset Z(e_0)$. Thus the function

$$\alpha(t) = \alpha_2(t) - 1 \quad \text{for } t \in R(x)$$
$$= 0 \quad \text{for } t \in Z(x)$$

has the required properties.

(ii) implies (iii): If (ii) is satisfied then by Theorem 3.1 there is a $u \in V^{\infty}(X^*)$, ||u|| = 1, such that we have (3.7) and such that u'(t) x(t) = |x(t)| a.e. in *I*. Hence by Remark 2.4 we obtain

$$|u'(t) e_0(t)| = |u'(t)(\alpha(t) \cdot x(t))| = |\alpha(t)| \cdot |x(t)| = |e_0(t)|$$
 a.e. in *I*.

(iii) implies (i): Let us define

$$y(t) = 2e_0(t) \cdot \operatorname{sign} u'(t) e_0(t) \quad \text{for} \quad t \in I.$$

Then, by Remark 2.4, we obviously have u'(t) y(t) = |y(t)| a.e. in *I* and $u'(t)(y(t) - e_0(t)) = |y(t) - e_0(t)|$ a.e. in *I*. Thus by Theorem 3.1, 0 and e_0 are best approximations of y.

Remark 3.4. The condition "There exist an $x \in E^0$ and an $e \in E \setminus \{0\}$ such that $Z(e) \supset Z(x)$," which in the case of real-valued functions is necessary and sufficient for E not to be a *U*-space [5], is not sufficient in the case of vector-valued functions.

EXAMPLE. Let $X = \mathbb{R}^2$ with the Euclidean norm $|\cdot|$. Then every $x \in L(X)$ has the form x = (y, z), where $y, z \in L_1$, L_1 the space of all Lebesgue-summable real-valued functions. Let

$$E = \{e; e = (f, 0), f \in L_1\}.$$

Then we have for $x \in L(X)$, x = (y, z), and $e \in E$, e = (f, 0),

$$||x - e|| = \int_{I} |x - e| dt = \int_{I} (|y - f|^{2} + |z|^{2})^{1/2} dt.$$

Thus (y, 0) is the only best approximation of x in E and E is a U-space. On the other hand, for every $x = (0, z) \in E^0$ there exists an $e \in E \setminus \{0\}$, namely e = (z, 0), such that $Z(e) \supset Z(x)$.

Remark 3.5. If X is not a strict convex Banach space, condition (ii) of Theorem 3.3 is not necessary for E not to be a U-space.

EXAMPLE. Let $X = \mathbb{R}^2$ with the norm $|x| = |(x_1, x_2)| = \text{Max}(|x_1|, |x_2|)$, E the same subspace of L(X) as in Remark 3.4. Since for every $x \in L(X)$ of the form x = (0, y) and $e \in E$, e = (f, 0),

$$||x - e|| = \int_{I} \operatorname{Max}(|f|, |y|) dt,$$

every $e = (f, 0) \in E$ such that $|f| \leq |y|$ is a best approximation of x. On the other hand, if there exist an $x \in E^0$, x = (y, z), an $e \in E$, e = (f, 0), and a real function α such that $e = \alpha \cdot x$ a.e. in *I*, we must have $|y| \leq |z|$ a.e. in *I* which implies that e = 0 a.e. in Z(z) and $\alpha = 0$ a.e. in R(z). Thus e = 0 is the only element of *E* with the property $e = \alpha \cdot x$.

4. AN APPLICATION TO SIMULTANEOUS APPROXIMATION

Let $m, n \in \mathbb{N}$, $f_1, ..., f_m \in L_1$, and P_n be the space of all polynomials of degree less than or equal to n. Carroll and McLaughlin [4] considered the problem of finding a $p_0 \in P_n$ such that

$$\sum_{i=1}^{m} \int_{I} |f_{i} - p_{0}| dt = \inf_{p \in P_{n}} \sum_{i=1}^{m} \int_{I} |f_{i} - p| dt.$$
(4.1)

As remarked in [4], if m is even, the best approximation in this sense need not be unique.

Let $X = \mathbb{R}^m$ with the norm $|x| = |(x_1, ..., x_m)| = \sum_{i=1}^m |x_i|$ and let E be the space of all $e = (e_1, ..., e_m) \in L(X)$ such that there exists a $p \in P_n$ with $e_i = p$ for every i = 1, ..., m. Obviously, problem (4.1) is equivalent to the problem of finding for $x \in L(X)$ a best approximation in E. We show that there is a norm in X, namely every strict convex norm, such that the best approximation is always unique. We formulate this more generally.

Let A be an arbitrary set of indices, $X = \mathbb{R}^A$ a strict convex Banach space, Q a subspace of L_1 such that $\mu(Z(q)) = 0$ for every $q \in Q \setminus \{0\}$. For every $q \in Q$ let L(X) contain the element $e = \{e_a\}, e_a = q$, for every $a \in A$. Let E be the subspace of all such elements. An element $x = \{x_a\} \in L(X)$ will be said to have the property (P) if there are indices a and b in A such that $x_a \neq x_b$ in a set of positive measure.

THEOREM 4.1. For every $x \in L(X)$ with the property (P) the set $P_E(x)$ contains at most one element.

Proof. If there is an $x \in L\{X\}$ such that e and $-e \in E \setminus \{0\}$ are best approximations of x, then by the proof of Theorem 3.3 there is a real function α

JAROSLAV MACH

such that $e = \alpha \cdot x$ a.e. in *I*. Since $e(t) \neq 0$ a.e. in *I*, we have $\alpha(t) \neq 0$ a.e. in *I*. Thus $x(t) = 1/\alpha(t) \cdot e(t)$ a.e. in *I*, which implies that x cannot have the property (*P*).

The following corollaries are immediate consequences of Theorem 4.1.

COROLLARY 4.2. Let *m* be an integer, $m \ge 2$. Then for every $x = (x_1, ..., x_m), x_i \in L_1, i = 1, ..., m$, satisfying the condition (P) there is at most one $q_0 \in Q$ such that

$$\int_{I} \left(\sum_{i=1}^{m} |x_{i}(t) - q_{0}(t)|^{2} \right)^{1/2} dt = \inf_{q \in Q} \int_{I} \left(\sum_{i=1}^{m} |x_{i}(t) - q(t)|^{2} \right)^{1/2} dt.$$

COROLLARY 4.3. For every $x = \{x_i\}_{i=1}^{\infty}$, $x_i \in L_1$, $i \in \mathbb{N}$, satisfying the condition (P) and such that $\sup_{i \in \mathbb{N}} \int_I |x_i(t)| dt < +\infty$ there exists at most one $q_0 \in Q$ such that

$$\int_{I} \left(\sum_{i=1}^{\infty} \frac{1}{2^{i}} |x_{i}(t) - q_{0}(t)|^{2} \right)^{1/2} dt = \inf_{q \in Q} \int_{I} \left(\sum_{i=1}^{\infty} \frac{1}{2^{i}} |x_{i}(t) - q(t)|^{2} \right)^{1/2} dt.$$

References

- 1. S. BOCHNER, Integration von Funktionen deren Werte die Elemente eines Vektorraumes sind, *Fund. Math.* 20 (1933), 262–276.
- 2. S. BOCHNER, Absolut-additive abstrakte Mengenfunktionen, Fund. Math. 21 (1933), 211-213.
- 3. S. BOCHNER AND A. E. TAYLOR, Linear functionals on certain spaces of abstractly valued functions, *Ann. of Math.* 39 (1938), 913–944.
- M.P. CARROLL AND H.W. MCLAUGHLIN, L₁ approximation of vector-valued functions, J. Approximation Theory 7 (1973), 122–131.
- E. W. CHENEY AND D. E. WULBERT, The existence and unicity of best approximations, Math. Scand. 24 (1969), 113–140.
- 6. J. DUGUNDJI, "Topology," Allyn and Bacon, Boston, 1967.
- 7. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators," Vol. I, Interscience, New York, 1958.
- R. C. JAMES, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292.
- 9. V. JARNÍK, "Integrální Počet, II," Nakladatelstvi ČSAV, Praha, 1955.
- B. R. KRIPKE AND T. J. RIVLIN, Approximation in the metric of L₁(X, μ), Trans. Amer. Math. Soc. 119 (1965), 101–122.
- 11. V. PTÁK, On approximation of continuous functions in the metric $a\int^{b} |x(t)| dt$, Czechoslovak Math. J. 8 (83) (1958), 267–273.
- I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin/Heidelberg/New York, 1970.