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In this paper the approximation properties of the space of functions with
values in a Banach space which are summable in the sense of Bochner [1]
are studied. We obtain some theorems on the characterization and unicity
of best approximations related to those given by Cheney and Wulbert [5],
Kripke and Rivlin [10], Ptak [11], and Singer [12] for real-valued summable
functions. In Section 4 we apply our results to an approximation problem
similar to that investigated by Carroll and McLaughlin [4].

1. DEFINITIONS

Let I be the interval [0, 1], fk the Lebesgue measure on I, and X a real
Banach space with the norm I . I. The class of all summable functions x(t)
on I into X (for the definition of measurability and summability see [1])
provided with the norm

II x II = II I x(t)1 dt

is a Banach space and will be denoted by L(X). Following Bochner and
Taylor [3] we denote further by V"'(X) the class of all functions x(t) on I
into X such that x(O) = 0 and such that there is a constant A ~ 0 with the
property Ix(t + h) - x(t)1 ~ A I h I, whenever t and t + h belong to I.
Denoting by N(x) the least such constant and defining the norm on V"'(X)
by II x II = N(x), V"'(X) is a Banach space. The space of all continuous func
tions x(t) on I into X provided with the norm II x II = SUPl I x(t)1 will be
denoted by C(X). Let X* be the conjugate space of X. For x E L(X) and
U E V"'(X*) let the integral

Lduet) x(t)

be defined in the same way as in [3].
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The following theorem gives the general form of linear bounded functionals
on L(X).

THEOREM 1.1 (Bochner and Taylor [3]). For every f E L *(X) there is
a u E voo(X*) such that II u II = ilfll and

f(x) = Jduet) x(t)
I

(1.1)

for every x E L(X). Conversely, for every u E Voo(X*), (1.1) defines a linear

boundedjimctionalf on L(X) with Ilfll = Ii u II.

Let X be a normed linear space, E a subspace of X. For x E X we denote
by PE(x) the set of all best approximations of x in E, i.e., PE(x) = {eo E E;
II x - eo II = infeEE II x - ell}. E is said to be aU-space iffor every x E X the
set PE(x) contains at most one element of E. We further denote EO = {x E

oE PE(x)} and for a function x on I to X, R(x) = {t; x(t) 7'= O} and
Z(x) = {t; x(t) = O}. IR and N will denote the set of aU real numbers and
the set of all positive integers, respectively.

2. MAXIMAL FUNCTIONALS ON L(X)

In the main theorem of this section we give characterizations in terms of
"differentiability" of those functionals u on L(X) which are maximal, i.e.,
for which there is a x E L(X) with ux = II u Ii . II x II. In the particular case
that every function u on I to X which has bounded variation possesses the
strong derivative a.e. in I, this theorem is a consequence of Theorem 2.2 [3].
There are, however, as shown in [2], a Banach space X and a function
u E voo(X) such that u is not differentiable at any point in I.

We denote

'() () l' u(t + h) - u(t) ()u txt = 1m } x t
h-"'O 1

for U E V<Xl(X*), X E L(X), and every tEl for which the limit exists.

LEMMA 2.1. Let Q C I be a closed set, X a Banach space, x: Q -+ X a
continuousJunction, u E voo(X*), II u II = 1. Let

Then we have

I duet) x(t) = I i x(t)1 dt.
Q Q

(2.1)

u'(t) x(t) = I x(t)1 a.e. in Q.
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Proof. Since II u II = 1, (2.1) implies

Lduet) x(t) = LI x(t)1 dt (2.2)

for every measurable subset A of Q. The map x being continuous and bounded
by a constant M ~ 1, it may be extended to a continuous map on the whole
interval I bounded by the same constant M ([6, Theorem IX, 6.1]). This
extension will be denoted by x again. For t E Q, h =1= 0, z: Q -+ X let us
denote

D(t, h, z) = ((u(t + h) - u(t))(h) z(t).

The function lim infh~o D(t, h, x) is measurable (this fact may be proved in
a way similar to that used to prove the measurability of the lower derivative
of a real function). Since II u II = 1, we have for every t E Q

lim sup D(t, h, x) :S;; I x(t)l·
h-'>O

We denote

G = {t E Q; lim inf D(t, h, x) < I x(t)I},
h-'>O

Gn = {t E Q; lim inf D(t, h, x) < I x(t)! - lin},
h->O

n EN.

Obviously G = U:=1 Gn and the proof of the lemma will be completed by
showing that for every n E N, fk(Gn) = O. Assume the converse. Then
there is a no E N such that for Go = Gn we have fk(Go) = a > O.o

Let E be an arbitrary real number, 0 < E < a(2. Then there exist an open
set H, Go C H, a closed set F, FC Go and a continuous real functionf: I -+ I
withj(t) = 1 for every t EF, jet) = 0 for every t E I\H such that

and

fk(H\Go) < E(4M, fk(Go\F) < E(4M,

If I x(t)! dt - f I y(t)1 dt I < E,
Go I

If duet) x(t) - f duet) y(t) I < E,
Go I

(2.3)

(2.4)

(2.5)

where y = f . x. Since y is a continuous function, there is a 0 > 0 such that
for an arbitrary partition P: to ,... , tn of I and arbitrary points Ti E [ti- 1 , til,
i = 1, ... , n, I P I = maXi I t i - ti - 1 I < 0 implies

ILduCt) yet) - S(P) I < E, (2.6)
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(2.7)

Since Fe Go, there exists for every t E F a sequence {h7lt)hEN with the
properties

and

o < I hk(t) I < 0

lim h,cCt) = 0
k...,oo

for every kEN and every t E F,

for every t E F,

D(t, h,cCt), y) < I y(t)[ - llno (2.8)

for every t E F and kEN. The class of all intervals [t, t + h,cCt)] (or
[t + hit), t] if hk(t) < 0), t E F, covers the set F in the sense of Vitali [7].
Hence it has a finite disjoint subclass lUi)' i = 1,... , Tn, such that

(2.9)

Let Po be a partition of I consisting of all boundary points ti , ti + hi of
the intervals I(ti ), i = 1,... , Tn. Let PI : So , ... , Sv be a refinement of Po such
that none of the points Sj, j = 0, ... , p, is contained in any open interval
Int let;), i = 1, ... , Tn.

For every indexj = 1, ..., p exactly one of the following conditions can be
satisfied:

(i) [Sj-l, Sj] = J(ti) for some i = 1,... , Tn. In this case we put Tj = ti •

(ii) [Sj-l, Sj] n (/\H) cF .0 and (i) does not hold. In this case we
choose an arbitrary Tj E [Sj-I , Sj] n (I\H).

(iii) [Sj-l, Sj] n (J\H) = 0 and (i) does not hold. In this case we
choose an arbitrary Tj E [Sj-I , Sj].

Denoting by B the set of all indices j which satisfy condition (iii), we have
by (2.3) and (2.8)



42 JAROSLAV MACH

Hence, we have by (2.4)-(2.9)

f duet) x(t) ~ f duet) yet) + E < f (U(Sj) - U(Sj_1)) y(Tj) + 2E
Go I j~1

m

~ L D(ti ,hi' y) I hi \ + L (U(Sj) - U(Sj_1)) y(Tj) + 2E
i-1 ~B

m m

~ L 1y(ti)I 1hi I - I (1/no) 1hi I + 3E
i~1 i=1

p m

~ L I Y(Ti) 1(Sj - Sj-1) - L (l/no) I hi I + 3E.
j~1 i~1

Since by (2.3) and (2.9), L::'1 Ihi I = P,(U::1 I(ti )) > a12, we have by (2.4)
and (2.7) for every E, 0 < E < a12,

f duCt) x(t) < f I x(t)1 dt - a/2no + 5E.
Go Go

This, however, for E < allOno , contradicts (2.2).

LEMMA 2.2. For UE V"'(X*), X E L(X), let ut(t) x(t) exist a.e. in I. Then

Proof. Since

Lut(t) x(t) dt = II duet) x(t). (2.10)

I ut(t) x(t)j = lim III h I I(u(t + It) - u(t)) x(t)1
h->O

~ II u III x(t)1 a.e. in I, (2.11)

ut(t) x(t) is summable. Let E > 0 be given. Then there is a I) > 0 such that
for every measurable set Gel, p,(G) < I) implies

t I x(t)1 dt < E/II u II· (2.12)

By Lusin's theorem there is ayE C(X) such that p,(R(x - y)) < 013 and

L1 x(t) - y(t)1 dt < E/II u II, (2.13)
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and a v EO C(IR) such that fL(R(v - u'x)) < 8/3 and

II i u'(t) x(t) - v(t)! dt < E.

43

(2.14)

We have vet) = u'(t) x(t) for every tEO N = (I\(R(x - y) U R(v - u'x)))\M,
fL(M) = O. We choose an Y), 0 < Y) < 8, such that for every partition P,
I P i < 1] implies

IS(P) - II duet) yet) I < E

and I t1 - t2 I < Y) implies

(2.15)

(2.16)

For every tEO N there exists a sequence hit) -+ 0 such that for every nEON,
o < hn(t) < Y) and

I D(!, hn(t), x) - u'(t) x(t)1 < E. (2.17)

Since the class of all intervals [t, t + hn(t)], tEO N, nEON, covers the set N
in the sense of Vitali, there is a kEN and a disjoint subclass [t1 , t1 + hj],
j = 1, ... , k, such that we have

(2.18)

Let P: So , ..., Sn be a refinement of the partition PI: t1 , •.. , tn + hn such that
IP I < Y), there is no index i = 0, ... , n such that Si E Int[t1 , tj + hi] for
some j = 1, ... , k and

IJ k duet) yet) - f (U(Si+1) - U(Si)) Y(Si) I < E, (2.19)
IIU j~l[tj,tj+hjJ t~O

i4;A

where A is the set of all indices i such that there is aj = 1,... , k with Si = t j •

Let us put

where Xis the characteristic function. By (2.15), we have

III wet) dt - Ldu(t)y(t) I< E.



44 JAROSLAV MACH

Further, by (2.11)-(2.14), (2.16), (2.17), (2.19), we have

ILw(t)dt - Lv(t)dt I
Ie

~ I f. I D(t} , h j , x) - v(t)1 dt
j=l [tj,tj+h j]

+ L! i~ (U(S;;~: =~:Si)Y(Si) -v(t») XfS,-,Si+it) Idt

itA

Ie

~ ~ i , I D(t; , h; , x) - U'(tj) x(tj)I dt
j=l Uj,tjThjJ

Ie

+ I f. I u'(t;) x(t}) - v(t)1 dt
j=l U;,t;+h;J

< 2£ +It (U(Si+1) - U(Si» Y(Si) I+ 2£ < 7£.
,=0
irtA

Further, by (2.13), we have

!Lduet) x(t) - Lduet) yet) I< £.

Hence

ILduet) x(t) - Lu'(t) x(t) dt I
~ ILduet) x(t) - Lduet) yet) I

+ILdu(t)y(t) - Lw(t) dt I+ ILwet) dt - Lvet) dt I
+ ILvet) dt - Lu'(t) x(t) dt I< lOE.

THEOREM 2.3. Let x E L(X), u E VOO(X*), Ii u II = 1. Then we have

Lduet) x(t) = II i x(t)1 dt (2.20)
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u'(t) X(t) = I x(t)1 a.e. in 1. (2.21)

Proof If (2.21) holds, then we have (2.20) by Lemma 2.2.
Conversely, let (2.20) be satisfied. Then by Lusin's theorem, for every

n E N there is an open set R n such that fL(R n) < lin and such that x is con
tinuous on I\Rn . Since for every n E N, (2.20) implies

J duet) x(t) = J I x(t)1 dt,
flR n flR n

we have (2.21) by Lemma 2.1.

Remark 2.4. Let u E V"'(X*) , X E L(X), yet) = aCt) . xU) a.e. in I,
where a is a real function on I. Let u'(t) x(t) exist a.e. in I. Then we
obviously have u'(t) yet) = aCt) . u'(t) x(t) a.e. in I.

3. BEST ApPROXIMATION IN L(X)

The following theorem characterizes elements of best approximation'in
L(X). The equivalence (i) -<=>- (iii) is a generalization of a well-known theorem
for real-valued summable functions given by James [8] and Kripke and
Rivlin [10]. Our proof of the implication (iii) => 0) is a modification of
Singer's proof [12].

THEOREM 3.1. Let E be a linear subspace of L(X), x E L(X)\E, eo E E.
Then the following conditions are equivalent:

(i) eoEPE(x)

(ii) There exists a u E V"'(X*), II u II = 1 such that we have

and

u'(t)(x(t) - eo(t» = I x(t) - eo(t) I a.e. in I (3.1)

Lduet) e(t) = 0 for every e E E. (3.2)

(iii) There exists a u E V"'(X*), II u II = 1, such that we have (3.1) and

If duCt) e(t) I ~ f i e(t)1 dt for all e E E. (3.3)
R(x-eo) Z(x-eo)

Proof (i) implies (ii): This is an immediate consequence of Singer's
Theorem 1.1 [12], and Theorems 1.1 and 2.3 above.
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(ii) implies (iii): For every e E E we have by (3.2)

It(X-eo) du(t) e(t) I :(; It(X-eo) du(t) e(t) I :(; t(x-e
o
) I e(t)1 dt.

(iii) implies (i): Let e E E. It follows from the Hahn-Banach theorem that
there exists a Ul E Voo(X*), II u1 II = 1, such that we have

Ldu1(t)(eO(t) - e(t)) = LI eo(t) - e(t)1 dt.

Hence

Defining

( )
_ fR(x-eo) du(eo - e) . ()

u2t~-f u1 t
2(X-80) I eo - e I dt

=0

we obtain II U2 II :(; I and

if f I eo - e I dt =1= 0,
2(X-80)

if f I eo - e I dt = 0,
2(X-80)

Hence

= f du(x - e) + f du2(x - e)
R(x-eo) 2(x-eo)

:(; f I x - e I dt + f I x - e I dt = II x - ell·
R(x-eo) 2(x-eo)

The next theorem gives equivalent conditions for a linear subspace E
of L(X) to be a U-space. Similar theorems for real-valued summable functions
have been proved by Cheney and Wulbert [5, Theorem 21] and Singer
[12, Theorem 3.4].
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LEMMA 3.2. Let X be a strict convex Banach space and let x E L(X) have
two best approximations e1 , e2E E, e1 =Ie e2 • Then we have

(3.4)

where eo = e1/2 + e2/2 and there exists a real nonnegative function a such
that

x(t) - e1(t) = aU) . (x(t) - e2(t))

Proof Since e1 , e2 , eo E PE(x), we have

a.e. in R(x - e2). (3.5)

L(! x - e1 I + I x - e2 I - 2 I x - eo t) dt = O.

The integrand being nonnegative, we must have

! x(t) - e1(t) I + i x(t) - e2(t)1 = 2 ! x(t) - eo(t)! a.e. in I,

which implies (3.4) (this argument is due to Cheney and Wulbert [5]). Since
X is strict convex, there exists a real nonnegative function a such that (3.5)
holds.

THEOREM 3.3. Let X be a strict convex Banach space, E a linear subspace
of L(X). Then the following conditions are equivalent:

(i) E is not aU-space.

(ii) There exist an x E EO, an eo E E\{O}, and a real function cx, I cx I :::;; 1,
such that

eo(t) = cx(t) . x(t) a.e. in I. (3.6)

(iii) There exist a u E Vco(X*), II u II = 1, and an eo E E\{O} such that

and

LduCt) e(t) = 0 for every e E E (3.7)

I uf(t) eo(t) I = I eo(t)! a.e. in 1. (3.8)

Proof (i) implies (ii): If E is not a U-space then there exist an x E EO
and an eo E E\{O} such that eo, -eo E PE(x) (see e.g., [11, remark
following 1.3]). By Lemma 3.2 there exist real nonnegative functions CXI

and CX2 such that we have

x(t) - eo(t) = CXl(t) • x(t)

x(t) + eo(t) = CX2(t) . x(t)

a.e. in R(x),

a.e. in R(x).
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Since CXl and CX2 are nonnegative, we must have

a.e. in R(x).

On the other hand, we have by Lemma 3.2, Z(x) C Z(eo). Thus the function

CX(t) = cx2(t) - 1

=0
for t E R(x)

for t E Z(x)

has the required properties.

(ii) implies (iii): If (ii) is satisfied then by Theorem 3.1 there is a
u E V"'(X*), II u II = 1, such that we have (3.7) and such that u'(t) x(t) =
I x(t)1 a.e. in 1. Hence by Remark 2.4 we obtain

Iu'(t) eo(t)1 = I u'(t)(cx(t) • x(t))I = I cx(t)1 • I x(t)1 = I eo(t)!

(iii) implies (i): Let us define

a.e. in 1.

yet) = 2eo(t) . sign u'(t) eo(t) for t E 1.

Then, by Remark 2.4, we obviously have u'(t) yet) = [y(t)[ a.e. in I and
u'(t)(y(t) - eo(t)) = Iyet) - eo(t)1 a.e. in I. Thus by Theorem 3.1, 0 and eo
are best approximations of y.

Remark 3.4. The condition "There exist an x E EO and an e E E\{O}
such that Z(e) ".J Z(x)," which in the case of real-valued functions is necessary
and sufficient for E not to be a V-space [5], is not sufficient in the case of
vector-valued functions.

EXAMPLE. Let X = [R2 with the Euclidean norm I . I. Then every x E L(X)
has the form x = (y, z), where y, z E L l , L l the space of all Lebesgue
summable real-valued functions. Let

E = {e; e = (f, O),fE Ll }.

Then we have for x E L(X), x = (y, z), and e E E, e = (f, 0),

II x - ell = JI x - e 1dt = J(I y - 11 2 + I Z 12)1/2 dt.
I I

Thus (y,O) is the only best approximation of x in E and E is a V-space.
On the other hand, for every x = (0, z) E EO there exists an e E E\{O}, namely
e = (z,O), such that Z(e)".J Z(x).

Remark 3.5. If X is not a strict convex Banach space, condition (ii) of
Theorem 3.3 is not necessary for E not to be a V-space.
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EXAMPLE. Let X = 1R2 with the norm I x 1 = l(x1 , X2)! = Max(1 Xl i, i X2 I),
E the same subspace of L(X) as in Remark 3.4. Since for every X E L(X)

of the form x = (0, y) and e E E, e = (f, 0),

I!x-el!= LMax(III,ryi)dt,

every e = (f, 0) EO E such that III ~ i y I is a best approximation of x.
On the other hand, if there exist an x EO EO, x = z), an e EO e = (f, 0),
and a real function ex such that e = ex . x a.e. in I, we must have I y i ~ z:
a.e. in / which implies that e = 0 a.e. in Z(z) and ex = 0 a.e. in R(z). Thus
e = 0 is the only element of E with the property e = ex • X.

4. AN ApPLICATION TO SIMULTANEOUS ApPROXIMATION

Let m, nEON, II ,... ,Im EO L1 , and Pn be the space of all polynomials of
degree less than or equal to n. Carroll and McLaughlin [4] considered the
problem of finding a Po EO Pn such that

~l LiIi - Po i dt = J~J: i~ L! j; - p I dt. (4.1)

As remarked in [4], if m is even, the best approximation in this sense need
not be unique.

Let X = IRm with the norm I x I = I(xl ,...,xm)i = L;:l I Xi I and let E
be the space of all e = (el , ... , em) E L(X) such that there exists apE P" with
ei = P for every i = 1,... , m. Obviously, problem (4.1) is equivalent to the
problem offinding for x EO L(X) a best approximation in E. We show that there
is a norm in X, namely every strict convex norm, such that the best approxi
mation is always unique. We formulate this more generally.

Let A be an arbitrary set of indices, X = IRA a strict convex Banach space,
Q a subspace of £1 such that p.(Z(q)) = 0 for every q EO Q\{O}. For every q EO Q
Jet L(X) contain the element e = {ea}, ea = q, for every a E A. Let E be the
subspace of all such elements. An element x = {xa} EO L(X) will be said to
have the property (P) if there are indices a and b in A such that Xu ¥= Xb in
a set of positive measure.

THEOREM 4.1. For every x EO L(X) with the property (P) the set PE(x)
contains at most one element.

Proof Ifthere is an x E L{X} such that e and -e EO E\{O} are best approxi
mations of x, then by the proof of Theorem 3.3 there is a real function ex
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such that e = (X • x a.e. in I. Since e(t) =F 0 a.e. in I, we have (X(t) =F 0 a.e.
in 1. Thus x(t) = IjlX(t) . e(t) a.e. in I, which implies that x cannot have the
property (P).

The following corollaries are immediate consequences of Theorem 4.1.

COROLLARY 4.2. Let m be an integer, m;::;; 2. Then for every
x = (Xl"'" X m ), Xi E L I , i = 1,... , m, satisfying the condition (P) there
is at most one qo E Q such that

COROLLARY 4.3. For every x = {Xi}~l' Xi ELI' i EN, satisfying the
condition (P) and such that SUPiEI\! SI Ixlt)1 dt < + 00 there exists at most
one qo E Q such that
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